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1. INTRODUCTION

The problem studied in this paper is the analysis of the stability bounds
for local Lagrangian (polynomial) interpolation as a function of mesh
ratios. The results are useful in studying the behavior of local piecewise
polynomial interpolation on highly non-uniform meshes [3]. Swartz and
Varga [5], in their extensive study of stability, consider only quasi-uniform
meshes and the effect of the mesh ratio is absorbed into generic constants.
Also, their results do not consider the case of multiple interpolation points
as is done here. Prenter [2] has a result similar to that of (3.6) below, but
again only distinct interpolation points are considered. This paper presents
stability bounds for both the cases of quasi-uniform meshes and locally
quasi-uniform meshes where the dependence on the mesh ratio is explicitly
given.

Let {xn} ~ = I in [a, b] be given with respective multiplicities {Jln} ~ = I. Set

d

N= L Jln
n=l

and let {l,6rs}' the Lagrange polynomials, be those functions in P N' the space
of polynomials of degrees less than N, which satisjy

(1.1 )

for l~s~Jl" l~r~d. Then for any je CN[a, b]

d 1',

(Qf)(x):= L L j(s-I)(Xr) I,6rs(x)
r=ls=l

satisfies the generalized interpolation conditions

(Qf(J-I))(X;)=j(J-I)(X;) 1 ~j~Jli' 1 :G:.i~d.
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(1.2)
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To study the stability of this interpolation, it is necessary to examine

r~ 1 s= 1

(here 11·/1 is the maximum norm over [a, b]). In fact, bounds will be
established for ItP~{-I)(x)1 when x E [xn , X n + I] for general n,}, r, s.

An argument reminiscent of [1, pp.289-290] establishes that the error
in estimating I by Qf satisfies

1~}~N, (1.3 )

for IE CN[a, b]. Here, and in what follows, hi := x i + 1 - Xi for 1~ i < d, and
h := maxi hi' For example, by repeated applications of Rolle's theorem
there is a z in (X1,Xd ) such that (f_Qj)(N-I)(Z)=O; hence,
(f_Qj)(N-I)(X)=(x-z)/(N)(() for some ( in (XI,Xd ), i.e.,
1I(f-Qf)(N-I)II~(d-1)hllf(N)II. Note that the order constant in (1.3)
does not depend on the distribution of the mesh {x;}. However, if the
quantities f(S-I)(X r ) are replaced by O(e)-accurate estimates !<s-I)(xr ),

then from (1.2)

(1.4 )
r s

so stability depends on the bounds for ItP~;-I)I. As will be shown, these
bounds can be quite large for highly non-uniform meshes.

Two classes of meshes are considered: quasi-uniform and locally quasi­
uniform. A quasi-uniform mesh, with mesh ratio (1, is one for which

for every i, j. (1.5 )

A locally quasi-uniform mesh, with local mesh ratio R, is one for which

for every i. ( 1.6)

For the latter class of meshes, the analog of (1.5) is

for every i,j. (1.7)

In what follows C represents a positive generic constant, possibly depen­
dent on {Jln}, d, and b - a. However, it will not depend on (1 or R, as the
explicit dependence of stability bounds on mesh ratios is the main object of
this paper.

The Lagrange polynomials tPrs can be generated recursively, as is well
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known (e.g., [4, p. 53]). Define the auxiliary Lagrange polynomials L,s(x)
by

(1.8)

/"

cP,s(x) = L,s(x) - L L~f-l)(X,) cP,p(x),
p=s+l

/"

cP~{-l)(x)=L~{-l)(X)- L L~:-l)(X,)cP~~-l)(X). (1.9)
p=s+l

Clearly, it is necessary to study L,s(x), so first consider (1.8) for general
meshes. It is convenient to write L,s(x) = 01= 1 Fix), where
Fix):=[(x-xj)/(x,-xj)]/,j for j#r, and F,(x):=(x-x,y-l/(s-l)!.
(While it is true that Fj also depends on rand s, these subscripts have been
omitted for clarity.) A simple extension of Leibnitz' rule for products yields

where k d := 1. As a straightforward consequence of this expansion, we have
equations for L~~o-l)(X) and L~~o-l)(X,).

LEMMA 1. For ko- 1~ degree L",

d

L~~o-l)(x) =L'" L (x - x,y-l-k,-I +k, n
kl kd_1 j=l

j't"
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2. QUASI-UNIFORM MESHES

Assume that {Xi} satisfies (1.5) for some a> 0; we seek bounds for
1t,6~{-1)1 explicitly exhibiting the dependence on a. These bounds will be
over a fixed reference interval [xn, x n+ J ] so hn factors will appear.

To bound L~~o- I) in terms of a and hn, it is first necessary to study the
behavior of the individual factors in (1.1O}-(1.l1). For XE [xn, x n+ l ] in
case j ~ nand r ~ n

I
(x - xj)!'rkJ-1 +kJI ~ (xn+ 1 - x)!'rkJ-1 +kJ

(xr - xj)!'J "" IXr - x)!'J

~ {(ahn)!'rkJ-I+kJ h~J-kJ-'+kJ}

"" C max h~J '(hn/a)!'J

= Ca!,j/h~j-J -kj.

Similarly, for j> nand r> n the bound is also Ca!'J/h~j-' - kJ, while for
r~n<j or j~n<r the bound is l/h~-,-kJ.

LEMMA 2. For k o-l ~degreeLrs and x in [xn' x n+ l ]

where

(2.1 )

G(r, n) =

n

L Ilj
j=1

d

L Jlj
j=n+1

r~n

r>n;

Proof From Lemma 1, when r ~ n

IL(ko-I)(x)I~CL'" L 'fIl(Xn+I-X)!'J-kJ-,+kJ
rs (x - x)!'J

kl kd-lj=1 r J

. fI (Xn+I-XjYj-kj-l+kj

j=r+1 (xj-xr)!'j

hJln+l-kn+kn+l d

X n n
(Xn+ 1 - Xr)!'n+J +k,_I-k,+ 1-s

j=n+2

(2.2)

(Xj - xn)!ij- kj_1 + kj

(Xj-Xr)!,j

(2.3 )
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where e ;::: (ko-k'_I) + (k,-kn) + (k'_I-k,+l-s+kn-kn+ l ) +
(kn+ 1 - kd) ;::: ko- s (recall kd=:: 1). A similar argument works for r> n. As
for (2.2), l/lx,_x)kj-l-kj~(O'/hn)kj-l-kj; similarly from (1.11),

But ko-k'_1 +k,-kd=ko+ 1-s-1 ;:::ko-s. I
The bound on the individual Lagrange functions r/J,s can now be

established from the recursion (1.9).

THEOREM 1. For j~N and x in [xn, Xn+l]

{Ch
S - j

(. I) n
Ir/J,{- (x)1 ~ Chs-jO'G("n)-s

n ,

l=r=n or n+1=r=d (2.4)
otherwise,

with G(r, n) as in Lemma 2.

Proof The argument is by induction on s (from J1., down to 1), For
s;::: J.l., we have r/J"I"(x) = L,.I"(x) and the result follows from Lemma 2.
Assume true for s~ k + 1, then

1',

</J~l-l)(X) = L~l-l)(X) - L L~f-l)(x,) r/J~~-I)(X).

p=k+1

Hence, in general,

1',

1r/J~l-l)(x)1 ~ Ch~-jO'G("n)-I"+C L (O'/hny-k h~-jO'G("n)-p

p=k+1

where e ;::: min(Ii" k) =k, as desired, There are special cases when r =n =1
or r=::n+l=::d; e,g., G(I,I)=J1.1 so IL~~o-l)(x)I~C/h~O-s on [X ll X2].
Similarly, from (1.11),

Since these bounds are independent of 0', so is the one for 1r/J\{-l)(X)! on
[X 1,X2]. I

From Theorem 1 it is a simple manner to derive the stability results
sought; in particular, with e := max(}:; = 1 lip, }:~~ n + 1 lip),

d 1',

L L 1r/J~{-I)(x)I~Ch~-jO'e-1
r=ls=]

(2.5)
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for X n~ x ~ X n+ I and hn~ 1. If d> 2 and the multiplicity is constant this
becomes

d IlL L 1~~;-I)(x)1 ~ Ch~ -jITll.max(n,d-n)-I.
r= 1 s= 1

(2.6)

As yet, no claim has been made as to the sharpness of the bounds in
Lemma 2 or Theorem 1. The bound (2.1) on L~~o-I) can be shown sharp by
considering the mesh

Xi = (i - n) hn/IT,

Xi + 1 = hn [1 + (i - n)/IT],

I ~i~n

n~i~d-l,
(2.7)

for which [xn, X n+ 1] = [0, hnJ. Let v := LN' Ilj + S - 1, the degree of L,s;
then from (1.8)

so for r~ n,

VV)(X) = v! 'rY [ IT JIlJ fI [ -IT Jill fI
's (s-I)!j=1 (r-j)hn j=,+1 (j-r)hn j=n+l

[
-1 JIlJ

x [1+(j-l-r)/IT]hn

Hence,

d ( • 1 )-Il/IL~;)(x)1 =CITG("n)~Il'. n 1+J- IT -r J h:;'J·Mj
J=n+l

~ C(1G("n)-Il'/h~+ 1- s,

since (1 ~ 1. A similar argument suffices for r > n. Finally, from Markov's
inequality transformed to [0, hnJ,

for any x in [0, hn ] with 1~j ~ v. Thus,

max IL~~-I)1 ~ C(1G("n)-Il'/h~-s
[O,h.]

(2.8)



STABILITY OF LOCAL INTERPOLAnON 123

by induction. An analogous argument will not work on ¢J~{-I) because of
the possibility of cancellation in the recursion (1.9). In numerical
experiments, however, the stability bound (2.6) has been shown to be sharp
for meshes (2.7) even though (2.4) with this mesh is sometimes too
generous for particular values of rand s.

3. LOCALLY QUASI-UNIFORM MESHES

Assume that {Xi} satisfies (1.6) for some R > O. The results in this section
parallel those of the previous one so arguments will only be sketched. As
before, the individual factors in (1.10H1.11) must be bounded. Six cases
result depending on the relative ordering of r, n, and j. For x E [xn , X n + I],
if j < r~n,

I
(x - xj)l'j- kj_1 +kjl ~ (xn+ 1 - xj)l'j- kj_1 + kJ

(x r - xj)I'J "" (x r - xj)I'J

_ (hj+hj + 1+ +hn)l'j-kj-l+kj

- (hj + +hr_dI'J

Similarly, for r < j ~ n, the bound is CR(n-j+I)I'Jlh~-I-kJ, while for
r~n<j or j~n<r the bound is I/h~j-l-kj. Also, h~"+I-k"+kn+11

(Xn+1_xr)ll"+I+kr-l-kr+I-S~h~-I+k,-kr-l+k"+I~k", so substitution into
(2.3) produces the first result.

LEMMA 3. For ko-l ~degree L rs and x in [xn, x n+ l ]

where

F(r, n) =

r-l n

(n - r + 1) L Ilj + L (n - j + 1) Ilj
j=1 j=r+1

r-1 d

L, (j-n)llj+(r-n) L, Ilj
j~n+1 j=r+1

r~n

r>n.

(3.1 )

(3.2)
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where
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n-1 1=r~n

n-r+l l<r~n
e=

r-n n<r<d

d-n-1 n<r=d.

Proof (3.1) follows directly from (2.3) and the above remarks. As for
(3.2), from Lemma 1 when n < r <. d,

n r-l d

~C~>·L n (xr-Xj)krkJ-l n (xr-xyrkJ-l n (Xj_xr)krkJ-l

j-I j-n+1 j-r+1

r-I d

L (j-n)(kj_1-kj)+ L (r-n)(kj_1-kj )

j-r+1

r-I

= L kj + (r-n)(kr-kr_I-kd)
j=n

~ (r-n)ko+(r-n)(1-s-1)=(r-n)(ko-s).

The remaining cases follow similarly. I
The main result on the bounds of rPrs follows directly from the recursion

(1.9 ).

THEOREM 2. For j~N and x in [xn,xn + I ],

where

E(r, n, s) =

F(r, n) as in Lemma 3.

(Ill - s)(n - 1)+ F(1, n)

(Ilr-s)(n-r+ 1)+F(r, n)

(Ilr - s)(r - n) + F(r, n)

(Ild- s)(d- n -1) +F(d, n)

1=r~n

1<r~n

n<r<d

n<r=d;

(3.3 )
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Proof The argument is induction on s applied to (1.8H1.9), as in the
proof of Theorem 1. For example, the induction step for n < r < dis

Ilr

1<p~k-1)(x)1 ~ IL~k-l)(x)1 + L IL~k-l)(xr)II<P~t-1)(x)1
p=k+l

Ilr
~ Ch~ - jRF(r,n) + L.

p~k+l

Chk-pR(k -p)(r-n)h P - jR(Il,- p)(r-n) + F(r,n)
n n

Stability bounds here are more complicated than their analogs (2.5) and
(2.6) from the previous section; however, it follows from Theorem 2 that

d Il,L. L. 1<p~{-I)(x)1 ~ Ch~ -jRmax,E(r,n,l)
r= 1 s= 1

(3.4)

for xn~X~Xn+l and hn~ 1. If d>2 and the multiplicity is constant this
becomes

d Ilr
L L. 1<p~{-I)(x)1 ~Ch~-jRe

r= 1 s= 1

(3.5)

with e=max{(n-1)[Jl(n+2)/2-1J, (d-n-1)[Jl(d-n+2)/2-1J}.
As for sharpness, (3.1) can be shown sharp by considering the mesh

1~i<n

i=n

n<i<d.

(3,6)

The argument is analogous to that for quasi-uniform meshes. Numerical
experiments with this mesh indicate that the stability bound (3.5) is also
sharp.

4. ApPLICATIONS

As a simple example of the sharpness of the stability bounds, consider
the interpolating points <0, h, h(1 + 1/R), h(1 + 1/R+ 1/R2

) and
f(x)=x 4

• From (1.3) and (3.5) with Jl= 1, n= 1, d=4,j= 1, we expect

(4.1 )
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for III-III =O(e). With I(xd =/(xd + 1O~8u, u a random number from
the uniform distribution on [ -1, 1], typical results are shown in Table I.
A discrete maximum over 20 equally spaced points is used to estimate the
norm; the notation 0.90 - n means 0.90 x 10 ~n. Calculations were done on
an IBM 3081 with about 16 decimal digit accuracy.

It is important to point out that the sharpness of the bounds such as
(4.1) depends heavily on a lack of smoothness in the perturbations. If
l(x)=/(x)+eg(x) with g(x) smooth, then I-Q/=(I-Q)(f+eg)-eg;
consequently, from (1.3)

III- Q/II ~ C(1 +e) hN +e Ilgll

and a non-uniform mesh causes no difficulty.
A more interesting application arises in estimating the solutions of two­

point boundary value problems by the method of collocation [3]. As an
example, for a second-order differential equation a mesh 11 < 12 < ... is
chosen, and estimates for the solution and its slope are generated based on
collocation over C1-piecewise quintics. At the mesh points the errors in the
solution and its first derivative are known to be bounded by CH8

, where
H = max(t;+ 1- 1;), whereas errors elsewhere are at best only 0(H6

). It
seems reasonable to interpolate the high-order data with a 7th degree inter­
polating polynomial in order to maintain the 0(H8

) accuracy, globally. If
symmetric interpolating points are chosen, i.e., Xl =1; _ 1, x 2 = 1;, X 3 =1;+ l'

x 4 = 1; +2, each with multiplicity two, then

while from (1.4), in [X2' X3], corresponding to [1;, 1;+ 1]'

/(Q{- Q/)(J-l)1 ~ IlL L 1<b~t-l)l} CH8•

r s

TABLE I

h

0.1

0.01

R

10
100

1000
10000

10
100

1000
10000

Ilf-QfII

0.137-4
0.108 - 4
0.106 - 4
0.105 -4

0.137-8
0.108 - 8
0.106-8
0.105 - 8

IIf-Q/11

0.132 -4
0.894- 3
0.505
0.214+4

0.176-5
0.242-3
0.532
0.685 +3
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For this case, the stability bound (3.5) yields (n=2, d=4,j= 1)

IQf- Q/'\ ~ CR3H 8
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for locally quasi~uniform meshes. Hence, there can be a considerable
degradation of accuracy for highly non-uniform meshes. This degradation
is quite apparent in actual calculations, as in [3], and in light of the
remarks from the previous paragraph, it says that the collocation error
cannot be a smooth function.
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